Yu Tian

Incoming Assistant Professor of Computer Science at UCF.

yu_avatar.jpg

Yu Tian is a postdoctoral researcher at the University of Pennsylvania. Prior to joining UPenn, he was a postdoctoral research fellow at Harvard University. He earned both his Ph.D. and his BSc with First Class Honours in computer science from the Australian Institute for Machine Learning (AIML) at the University of Adelaide.

🔥🔥 I will be joining the Department of Computer Science at UCF as an Assistant Professor starting Summer 2025. I am actively seeking highly motivated PhD students, master’s/undergraduate students, and interns/visiting students to join my research group beginning after Summer 2025. For perspective PhD students, please consider applying to UCF’s Computer Science PhD program and mention my name in your application. Please read this Ph.D. opening document for detailed research topics and requirements.

News

Jan, 2025 One paper on fairness learning for glaucoma detection is accepted to npj Digital Medicine. Check out the paper here.
Jul, 2024 One paper on fairness under domain shift is accepted to ECCV 2024. Check out the paper and dataset here.
May, 2024 Two recent papers are accepted to Medical Image Analysis. One about artifact correction and another about malignant breast lesion detection.
Feb, 2024 One paper is accepted to IEEE Transactions on Medical Imaging (TMI).
Feb, 2024 Two papers are accepted to CVPR2024.

Selected publications

  1. ECCV
    fairdomain.png
    FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification
    Yu Tian, Congcong Wen, Min Shi, Muhammad Muneeb Afzal, Hao Huang, Muhammad Osama Khan, Yan Luo, Yi Fang, and Mengyu Wang
    European Conference on Computer Vision (ECCV), 2024
  2. TMI
    eyefair.png
    Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization
    Yan Luo*Yu Tian*, Min Shi*, Tobias Elze, and Mengyu Wang
    IEEE Transactions on Medical Imaging (TMI), 2024
  3. ICLR
    fairseg.png
    FairSeg: A Large-Scale Medical Image Segmentation Dataset for Fairness Learning Using Segment Anything Model with Fair Error-Bound Scaling
    Yu Tian, Yan Luo, Min Shi, Ava Kouhana, Tobias Elze, and Mengyu Wang
    International Conference on Learning Representations (ICLR), 2024
  4. ICLR
    anomalyclip.png
    AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection
    Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen
    International Conference on Learning Representations (ICLR), 2024
  5. COLING
    semantic_role.png
    Semantic Role Labeling Guided Out-of-distribution Detection
    Jinan Zou*, Maihao Guo*Yu Tian*, Yuhao Lin, Haiyao Cao, Lingqiao Liu, Ehsan Abbasnejad, and Javen Qinfeng Shi
    International Conference on Computational Linguistics (COLING), 2024
  6. ICCV
    glaucoma.png
    Harvard Glaucoma Detection and Progression: A Multimodal Multitask Dataset and Generalization-Reinforced Semi-Supervised Learning
    Yan Luo*, Min Shi*Yu Tian*, Tobias Elze, and Mengyu Wang
    In IEEE/CVF international conference on computer vision (ICCV), 2023
  7. MedIA
    medmix.png
    Self-supervised Pseudo Multi-class Pre-training for Unsupervised Anomaly Detection and Segmentation in Medical Images
    Yu Tian*, Fengbei Liu*, Guansong Pang, Yuanhong Chen, Yuyuan Liu, Johan W Verjans, Rajvinder Singh, and Gustavo Carneiro
    Medical Image Analysis (MedIA), 2023
  8. ECCV Oral
    pebal.png
    Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes
    Yu Tian*, Yuyuan Liu*, Guansong Pang, Fengbei Liu, Yuanhong Chen, and Gustavo Carneiro
    European Conference on Computer Vision (ECCV Oral), 2022
  9. MICCAI
    weak-polyp.gif
    Contrastive Transformer-based Multiple Instance Learning for Weakly Supervised Polyp Frame Detection
    Yu Tian, Guansong Pang, Fengbei Liu, Yuyuan Liu, Chong Wang, Yuanhong Chen, Johan W Verjans, and Gustavo Carneiro
    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
  10. CVPR
    acpl.png
    ACPL: Anti-curriculum Pseudo-labelling for Semi-supervised Medical Image Classification
    Fengbei Liu*Yu Tian*, Yuanhong Chen, Yuyuan Liu, Vasileios Belagiannis, and Gustavo Carneiro
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022
  11. AAAI Oral
    igd.png
    Deep One-Class Classification via Interpolated Gaussian Descriptor
    Yuanhong Chen*Yu Tian*^, Guansong Pang, and Gustavo Carneiro
    In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI Oral), 2022
  12. ICCV
    rtfm.gif
    Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
    Yu Tian, Guansong Pang, Yuanhong Chen, Rajvinder Singh, Johan W Verjans, and Gustavo Carneiro
    In IEEE/CVF international conference on computer vision (ICCV), 2021
  13. MICCAI
    miccai21_polyp.png
    Constrained Contrastive Distribution Learning for Unsupervised Anomaly Detection and Localisation in Medical Images
    Yu Tian, Guansong Pang, Fengbei Liu, Yuanhong Chen, Seon Ho Shin, Johan W Verjans, Rajvinder Singh, and Gustavo Carneiro
    In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
  14. MICCAI
    fsadnet.png
    Few-shot anomaly detection for polyp frames from colonoscopy
    Yu Tian, Gabriel Maicas, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Johan W Verjans, and Gustavo Carneiro
    In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020